Target Information
Target General Information | Top | |||||
---|---|---|---|---|---|---|
Target ID |
T80513
(Former ID: TTDI03197)
|
|||||
Target Name |
Free fatty acid receptor 3 (FFAR3)
|
|||||
Synonyms |
GPR41; G-protein coupled receptor 41
Click to Show/Hide
|
|||||
Gene Name |
FFAR3
|
|||||
Target Type |
Literature-reported target
|
[1] | ||||
Function |
G protein-coupled receptor that is activated by a major product of dietary fiber digestion, the short chain fatty acids (SCFAs), and that plays a role in the regulation of whole-body energy homeostasis and in intestinal immunity. In omnivorous mammals, the short chain fatty acids acetate, propionate and butyrate are produced primarily by the gut microbiome that metabolizes dietary fibers. SCFAs serve as a source of energy but also act as signaling molecules. That G protein-coupled receptor is probably coupled to the pertussis toxin-sensitive, G(i/o)-alpha family of G proteins. Its activation results in the formation of inositol 1,4,5-trisphosphate, the mobilization of intracellular calcium, the phosphorylation of the MAPK3/ERK1 and MAPK1/ERK2 kinases and the inhibition of intracellular cAMP accumulation. Activated by SCFAs and by beta-hydroxybutyrate, a ketone body produced by the liver upon starvation, it inhibits N-type calcium channels and modulates the activity of sympathetic neurons through a signaling cascade involving the beta and gamma subunits of its coupled G protein, phospholipase C and MAP kinases. Thereby, it may regulate energy expenditure through the control of the sympathetic nervous system that controls for instance heart rate. Upon activation by SCFAs accumulating in the intestine, it may also signal to the brain via neural circuits which in turn would regulate intestinal gluconeogenesis. May also control the production of hormones involved in whole-body energy homeostasis. May for instance, regulate blood pressure through renin secretion. May also regulate secretion of the PYY peptide by enteroendocrine cells and control gut motility, intestinal transit rate, and the harvesting of energy from SCFAs produced by gut microbiota. May also indirectly regulate the production of LEP/Leptin, a hormone acting on the CNS to inhibit food intake, in response to the presence of short-chain fatty acids in the intestine. Finally, may also play a role in glucose homeostasis. Besides its role in energy homeostasis, may play a role in intestinal immunity. May mediate the activation of the inflammatory and immune response by SCFAs in the gut, regulating the rapid production of chemokines and cytokines by intestinal epithelial cells. Among SCFAs, the fatty acids containing less than 6 carbons, the most potent activators are probably propionate, butyrate and pentanoate while acetate is a poor activator.
Click to Show/Hide
|
|||||
BioChemical Class |
GPCR rhodopsin
|
|||||
UniProt ID | ||||||
Sequence |
MDTGPDQSYFSGNHWFVFSVYLLTFLVGLPLNLLALVVFVGKLQRRPVAVDVLLLNLTAS
DLLLLLFLPFRMVEAANGMHWPLPFILCPLSGFIFFTTIYLTALFLAAVSIERFLSVAHP LWYKTRPRLGQAGLVSVACWLLASAHCSVVYVIEFSGDISHSQGTNGTCYLEFRKDQLAI LLPVRLEMAVVLFVVPLIITSYCYSRLVWILGRGGSHRRQRRVAGLLAATLLNFLVCFGP YNVSHVVGYICGESPAWRIYVTLLSTLNSCVDPFVYYFSSSGFQADFHELLRRLCGLWGQ WQQESSMELKEQKGGEEQRADRPAERKTSEHSQGCGTGGQVACAES Click to Show/Hide
|
|||||
3D Structure | Click to Show 3D Structure of This Target | AlphaFold | ||||
HIT2.0 ID | T61LV9 |
Cell-based Target Expression Variations | Top | |||||
---|---|---|---|---|---|---|
Cell-based Target Expression Variations |
Different Human System Profiles of Target | Top |
---|---|
Human Similarity Proteins
of target is determined by comparing the sequence similarity of all human proteins with the target based on BLAST. The similarity proteins for a target are defined as the proteins with E-value < 0.005 and outside the protein families of the target.
A target that has fewer human similarity proteins outside its family is commonly regarded to possess a greater capacity to avoid undesired interactions and thus increase the possibility of finding successful drugs
(Brief Bioinform, 21: 649-662, 2020).
Human Similarity Proteins
|
Chemical Structure based Activity Landscape of Target | Top |
---|---|
Drug Property Profile of Target | Top | |
---|---|---|
(1) Molecular Weight (mw) based Drug Clustering | (2) Octanol/Water Partition Coefficient (xlogp) based Drug Clustering | |
|
||
(3) Hydrogen Bond Donor Count (hbonddonor) based Drug Clustering | (4) Hydrogen Bond Acceptor Count (hbondacc) based Drug Clustering | |
|
||
(5) Rotatable Bond Count (rotbonds) based Drug Clustering | (6) Topological Polar Surface Area (polararea) based Drug Clustering | |
|
||
"RO5" indicates the cutoff set by lipinski's rule of five; "D123AB" colored in GREEN denotes the no violation of any cutoff in lipinski's rule of five; "D123AB" colored in PURPLE refers to the violation of only one cutoff in lipinski's rule of five; "D123AB" colored in BLACK represents the violation of more than one cutoffs in lipinski's rule of five |
Target Poor or Non Binders | Top | |||||
---|---|---|---|---|---|---|
Target Poor or Non Binders |
References | Top | |||||
---|---|---|---|---|---|---|
REF 1 | Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc Natl Acad Sci U S A. 2004 Jan 27;101(4):1045-50. | |||||
REF 2 | Identification and functional characterization of allosteric agonists for the G protein-coupled receptor FFA2. Mol Pharmacol. 2008 Dec;74(6):1599-609. | |||||
REF 3 | Selective orthosteric free fatty acid receptor 2 (FFA2) agonists: identification of the structural and chemical requirements for selective activation of FFA2 versus FFA3. J Biol Chem. 2011 Mar 25;286(12):10628-40. |
If You Find Any Error in Data or Bug in Web Service, Please Kindly Report It to Dr. Zhou and Dr. Zhang.