Therapeutic Targets Database

QSAR Model

Target Name	CCR5 receptor
Target TTD ID	TTDS00326

Target Species	Human
Chemical Type	Substituted 1-(3,3-diphenylpropyl)-piperidinyl amides
Mode of Action	Binder
QSAR Model 1	$\begin{aligned} \mathrm{pIC}_{50} &= -0.863(\pm 0.820)\sigma_{\mathrm{R2}_m} + 1.230(\pm 0.355)\sigma_{\mathrm{R2}_p} + 0.737(\pm 0.614)\sigma_{\mathrm{R3}_p} + 1.179(\pm 0.469)\mathrm{mr}_{\mathrm{R3}_p} \\ & -0.356(\pm 0.142)\mathrm{mr}_{\mathrm{R3}_p}^2 + 0.791(\pm 0.371)I_{\mathrm{NHCH2}} - 1.279(\pm 0.670)I_{\mathrm{BRANCH}} - 1.206(\pm 0.666)I_{\mathrm{R4}_48} \\ & + 2.986(\pm 0.185) \end{aligned}$ $n &= 79, \ R_a^2 = 0.719, \ R^2 = 0.747, \ R = 0.865, \ F = 25.9(\mathrm{df8}, 70), \ s = 0.455, \ \mathrm{SDEP} = 0.487, \\ S_{\mathrm{PRESS}} = 0.517, \ Q^2 = 0.674, \ \mathrm{PRESS} = 18.706 \end{aligned}$
QSAR Model 2	$\begin{split} \mathrm{pIC}_{50} &= 3.709(\pm 2.315) \log P_{\mathrm{calcd}} - 0.332(\pm 0.204) \times [\log P_{\mathrm{calcd}}]^2 - 1.752(\pm 1.389) \sigma_{\mathrm{R2.m}}^2 \\ & + 1.238(\pm 0.331) \sigma_{\mathrm{R2.p}} + 0.813(\pm 0.573) \sigma_{\mathrm{R3.p}} + 1.391(\pm 0.483) \mathrm{mr}_{\mathrm{R3.p}} - 0.415(\pm 0.144) \mathrm{mr}_{\mathrm{R3.p}}^2 \\ & + 0.764(\pm 0.349) I_{\mathrm{NHCH2}} - 1.346(\pm 0.625) I_{\mathrm{BRANCH}} - 1.229(\pm 0.623) I_{\mathrm{R4.4S}} - 7.287(\pm 6.615) \end{split}$ $\begin{split} n &= 79, R_a^2 = 0.757, R^2 = 0.788, R = 0.888, \ F = 25.3(\mathrm{df}10, 68), s = 0.423, \ \mathrm{SDEP} = 0.468, \\ S_{\mathrm{PRESS}} = 0.505, \ Q^2 = 0.698, \ \mathrm{PRESS} = 17.344 \end{split}$
QSAR Model 3	$\begin{split} \mathrm{pIC}_{50} &= 4.794(\pm 2.367)\log P_{\mathrm{calcd}} - 0.430(\pm 0.210) \times \left[\log P_{\mathrm{calcd}}\right]^2 + 1.013(\pm 0.361)\sigma_{\mathrm{R2_p}} \\ & + 0.579(\pm 0.397)L_{\mathrm{R2_p}} - 0.050(\pm 0.046)L_{\mathrm{R2_p}}^2 + 0.840(\pm 0.547)\sigma_{\mathrm{R3_p}} + 1.416(\pm 0.459)\mathrm{mr_{R3_p}} \\ & - 0.423(\pm 0.138)\mathrm{mr_{R3_p}}^2 + 0.878(\pm 0.329)I_{\mathrm{NHCH2}} - 1.058(\pm 0.609)I_{\mathrm{BRANCH}} - 1.250(\pm 0.595)I_{\mathrm{R4_4S}} \\ & - 11.609(\pm 6.770) \end{split}$ $n = 79, \ R_a^2 = 0.779, \ R^2 = 0.810, \ R = 0.900, \ F = 25.9(\mathrm{df}11,67), \ s = 0.403, \ \mathrm{SDEP} = 0.462, \\ S_{\mathrm{PRESS}} = 0.501, \ Q^2 = 0.706, \ \mathrm{PRESS} = 16.845 \end{split}$

QSAR Model 4	$ pIC_{50} = -2.008\sigma_{R2_m}^2 + 0.461\sigma_{R2_p} + 0.786\sigma_{R2_p}^2 - 0.201\pi_{R2_p} - 0.071mr_{R3_p}^2 + 0.890\sigma_{R3_p} \\ + 0.163B5_{R3_p} + 0.032B5_{R3_p}^2 - 0.007L_{R3_p}^2 + 0.666I_{NHCH2} - 1.237I_{BRANCH} - 0.504I_{R2_2S} \\ - 1.448I_{R4_4S} + 3.006 \\ n = 79, \ R_a^2 = 0.757, \ R^2 = 0.797, \ R = 0.893, \ F = 98.5, \text{SDEP} = 0.437, \ S_{PRESS} = 0.448, \\ Q^2 = 0.737, \ PRESS = 15.068 \\ $
QSAR Model 5	$ pIC_{50} = -0.156(\pm 0.086)fs1 + 0.158(\pm 0.086)fs2 + 0.141(\pm 0.086)fs3 + 0.559(\pm 0.086)fs4 \\ -0.157(\pm 0.086)fs5 - 0.154(\pm 0.086)fs6 + 0.170(\pm 0.086)fs8 - 0.157(\pm 0.086)fs9 \\ +0.234(\pm 0.086)fs10 - 0.207(\pm 0.086)fs12 + 0.132(\pm 0.086)fs14 - 0.121(\pm 0.086)fs18 \\ +3.651(\pm 0.086) $
	Access the following web-servers to compute molecular descriptors: MoDel and e-dragon
	Law: Indicator variable having value 1 if methylene group is present at X position, value 0 otherwise
	I _{CH2} . Indicator variable having value 1 if NHL even is present at X position, value 0 otherwise.
	$I_{\rm NH}$: Indicator variable having value 1 if NH group is present at X position, value 0 otherwise
	I _{NHCH} : Indicator variable having value 1 if NH–CH ₂ group is present at X position, value 0 otherwise
	I _{BRANCH} : Indicator variable having value 1 if branching is present at X position, value 0 otherwise
	I _{ETHYL} : Indicator variable having value 1 if ethyl group is present at R ¹ -position, value 0 otherwise
	I _{ALLYL} : Indicator variable having value 1 if allyl group is present at R ¹ -position, value 0 otherwise
Molecular	I _{C-PRO} : Indicator variable having value 1 if c-propyl group is present at R ¹ -position, value 0 otherwise
Descriptor	$I_{R2_{2S}}$: Indicator variable having value 1 if any substituent is present at 2nd position at R^2 , 0 otherwise
	$I_{R4_{3S}}$: Indicator variable having value 1 if any substituent is present at 3rd position at R ⁴ , 0 otherwise
	$I_{R4_{4}S}$: Indicator variable having value 1 if any substituent is present at 4th position at R ⁴ , 0 otherwise
	Lipophilicity (π), electronic (Hammett σ), and steric (molar refractivity mr and STERIMOL L, B1, and B5).
	Hydrophobic whole molecular descriptor (partition coefficient $logP_{calcd}$). Molar refractivity of R^3 substituents
	(mr_{R3_p}) . The STERIMOL parameter (L) of the para-substituents at R3-position. Lipophilic substituent
	constant (π_{R2_p}) of the para-substituents at the R ² -position. Molar refractivity (mr), length (L) and width (B5)
	of para-substituents at R ³ . Molar refractivity (mr), length (L) and width (B5) of para-substituents at R ² .
	Lipophilicity (π), electronic (Hammett σ) parameters, and width (B5) of para-substituents at R ² . The

	electronic (Hammett σ) parameters of the para-substituents at R ³ . NHCH2 substituents at X, para-
	substituents at R ⁴ -position.
Reference	Comparative QSAR modeling of CCR5 receptor binding affinity of substituted 1-(3,3-diphenylpropyl)-
	piperidinyl amides and ureas. Bioorganic & Medicinal Chemistry Letters 16 (2006) 4467-4474

Target Species	Human
Chemical Type	Substituted 1-(3,3-diphenylpropyl)-piperidinyl ureas
Mode of Action	Binder
QSAR Model 1	$\begin{split} \mathrm{pIC}_{50} &= -0.863(\pm 0.820)\sigma_{\mathrm{R2}_\mathrm{m}} + 1.230(\pm 0.355)\sigma_{\mathrm{R2}_\mathrm{p}} + 0.737(\pm 0.614)\sigma_{\mathrm{R3}_\mathrm{p}} + 1.179(\pm 0.469)\mathrm{mr}_{\mathrm{R3}_\mathrm{p}} \\ & -0.356(\pm 0.142)\mathrm{mr}_{\mathrm{R3}_\mathrm{p}}^2 + 0.791(\pm 0.371)I_{\mathrm{NHCH2}} - 1.279(\pm 0.670)I_{\mathrm{BRANCH}} - 1.206(\pm 0.666)I_{\mathrm{R4}_48} \\ & + 2.986(\pm 0.185) \end{split}$ $n = 79, \ R_a^2 = 0.719, \ R^2 = 0.747, \ R = 0.865, \ F = 25.9(\mathrm{df8}, 70), \ s = 0.455, \ \mathrm{SDEP} = 0.487, \\ S_{\mathrm{PRESS}} = 0.517, \ Q^2 = 0.674, \ \mathrm{PRESS} = 18.706 \end{split}$
QSAR Model 2	$\begin{split} \mathrm{pIC}_{50} &= 3.709(\pm 2.315) \log P_{\mathrm{calcd}} - 0.332(\pm 0.204) \times [\log P_{\mathrm{calcd}}]^2 - 1.752(\pm 1.389) \sigma_{\mathrm{R2},\mathrm{m}}^2 \\ & + 1.238(\pm 0.331) \sigma_{\mathrm{R2},\mathrm{p}} + 0.813(\pm 0.573) \sigma_{\mathrm{R3},\mathrm{p}} + 1.391(\pm 0.483) \mathrm{mr}_{\mathrm{R3},\mathrm{p}} - 0.415(\pm 0.144) \mathrm{mr}_{\mathrm{R3},\mathrm{p}}^2 \\ & + 0.764(\pm 0.349) I_{\mathrm{NHCH2}} - 1.346(\pm 0.625) I_{\mathrm{BRANCH}} - 1.229(\pm 0.623) I_{\mathrm{R4},\mathrm{48}} - 7.287(\pm 6.615) \end{split}$ $\begin{split} n &= 79, R_a^2 = 0.757, R^2 = 0.788, R = 0.888, \ F = 25.3(\mathrm{df}10, 68), s = 0.423, \ \mathrm{SDEP} = 0.468, \\ S_{\mathrm{PRESS}} = 0.505, \ Q^2 = 0.698, \ \mathrm{PRESS} = 17.344 \end{split}$
QSAR Model 3	$\begin{split} \mathrm{pIC}_{50} &= 4.794(\pm 2.367)\log P_{\mathrm{calcd}} - 0.430(\pm 0.210) \times \left[\log P_{\mathrm{calcd}}\right]^2 + 1.013(\pm 0.361)\sigma_{\mathrm{R2_{P}}} \\ &+ 0.579(\pm 0.397)L_{\mathrm{R2_{P}}} - 0.050(\pm 0.046)L_{\mathrm{R2_{P}}}^2 + 0.840(\pm 0.547)\sigma_{\mathrm{R3_{P}}} + 1.416(\pm 0.459)\mathrm{mr_{R3_{P}}} \\ &- 0.423(\pm 0.138)\mathrm{mr_{R3_{P}}^2} + 0.878(\pm 0.329)I_{\mathrm{NHCH2}} - 1.058(\pm 0.609)I_{\mathrm{BRANCH}} - 1.250(\pm 0.595)I_{\mathrm{R4_{4}}} \\ &- 11.609(\pm 6.770) \end{split}$ $\begin{split} n &= 79, \ R_a^2 = 0.779, \ R^2 = 0.810, \ R = 0.900, \ F = 25.9(\mathrm{df}11,67), \ s = 0.403, \ \mathrm{SDEP} = 0.462, \\ S_{\mathrm{PRESS}} = 0.501, \ Q^2 = 0.706, \ \mathrm{PRESS} = 16.845 \end{split}$

QSAR Model 4	$ pIC_{50} = -2.008\sigma_{R2_m}^2 + 0.461\sigma_{R2_p} + 0.786\sigma_{R2_p}^2 - 0.201\pi_{R2_p} - 0.071mr_{R3_p}^2 + 0.890\sigma_{R3_p} \\ + 0.163B5_{R3_p} + 0.032B5_{R3_p}^2 - 0.007L_{R3_p}^2 + 0.666I_{NHCH2} - 1.237I_{BRANCH} - 0.504I_{R2_2S} \\ - 1.448I_{R4_4S} + 3.006 \\ n = 79, \ R_a^2 = 0.757, \ R^2 = 0.797, \ R = 0.893, \ F = 98.5, \text{SDEP} = 0.437, \ S_{PRESS} = 0.448, \\ Q^2 = 0.737, \ PRESS = 15.068 \\ $
QSAR Model 5	$ pIC_{50} = -0.156(\pm 0.086)fs1 + 0.158(\pm 0.086)fs2 + 0.141(\pm 0.086)fs3 + 0.559(\pm 0.086)fs4 \\ -0.157(\pm 0.086)fs5 - 0.154(\pm 0.086)fs6 + 0.170(\pm 0.086)fs8 - 0.157(\pm 0.086)fs9 \\ +0.234(\pm 0.086)fs10 - 0.207(\pm 0.086)fs12 + 0.132(\pm 0.086)fs14 - 0.121(\pm 0.086)fs18 \\ +3.651(\pm 0.086) $
	Access the following web-servers to compute molecular descriptors: MoDel and e-dragon
	Law: Indicator variable having value 1 if methylene group is present at X position, value 0 otherwise
	I _{CH2} . Indicator variable having value 1 if NHL even is present at X position, value 0 otherwise.
	$I_{\rm NH}$: Indicator variable having value 1 if NH group is present at X position, value 0 otherwise
	I _{NHCH} : Indicator variable having value 1 if NH–CH ₂ group is present at X position, value 0 otherwise
	I _{BRANCH} : Indicator variable having value 1 if branching is present at X position, value 0 otherwise
	I _{ETHYL} : Indicator variable having value 1 if ethyl group is present at R ¹ -position, value 0 otherwise
	I _{ALLYL} : Indicator variable having value 1 if allyl group is present at R ¹ -position, value 0 otherwise
Molecular	I _{C-PRO} : Indicator variable having value 1 if c-propyl group is present at R ¹ -position, value 0 otherwise
Descriptor	$I_{R2_{2S}}$: Indicator variable having value 1 if any substituent is present at 2nd position at R^2 , 0 otherwise
	$I_{R4_{3S}}$: Indicator variable having value 1 if any substituent is present at 3rd position at R ⁴ , 0 otherwise
	$I_{R4_{4}S}$: Indicator variable having value 1 if any substituent is present at 4th position at R ⁴ , 0 otherwise
	Lipophilicity (π), electronic (Hammett σ), and steric (molar refractivity mr and STERIMOL L, B1, and B5).
	Hydrophobic whole molecular descriptor (partition coefficient $logP_{calcd}$). Molar refractivity of R^3 substituents
	(mr_{R3_p}) . The STERIMOL parameter (L) of the para-substituents at R3-position. Lipophilic substituent
	constant (π_{R2_p}) of the para-substituents at the R ² -position. Molar refractivity (mr), length (L) and width (B5)
	of para-substituents at R ³ . Molar refractivity (mr), length (L) and width (B5) of para-substituents at R ² .
	Lipophilicity (π), electronic (Hammett σ) parameters, and width (B5) of para-substituents at R ² . The

	electronic (Hammett σ) parameters of the para-substituents at R ³ . NHCH2 substituents at X, para-
	substituents at R ⁴ -position.
Reference	Comparative QSAR modeling of CCR5 receptor binding affinity of substituted 1-(3,3-diphenylpropyl)-
	piperidinyl amides and ureas. Bioorganic & Medicinal Chemistry Letters 16 (2006) 4467-4474