Therapeutic Targets Database

Target Name	Choline kinase
Target TTD ID	TTDR00805

Target Species	Human
Chemical Type	Biscationic dibromides
Mode of Action	Inhibitor
Activity Type	ex vivo inhibitory potency
QSAR	$p(IC_{50})_{\text{ex vivo}} = 4.08 (\pm 0.08) - 0.84 (\pm 0.17) \sigma_P$
Model 1	$n=5, r=0.943, s = 0.160, F_{1,3} = 24.3 \text{ (significance at } \alpha < 0.025)$
QSAR	$p(IC_{50})_{\text{ex vivo}} = 4.22 \ (\pm 0.30) + 0.19 \ (\pm 2.15) \ \sigma_I$
Model 2	$n = 5, r = 0.052, s = 0.482, F_{1,3} = 0.008 \ (\text{no significance})$
QSAR	$p(IC_{50})_{\text{ex vivo}} = 3.92 (\pm 0.00) - 0.92 (\pm 0.06) \sigma_R$
Model 3	$n = 5, r = 0.994, s = 0.052, F_{1,3} = 250 (\alpha < 0.001)$
QSAR	$p(IC_{50})_{\text{ex vivo}} = 19.35 \ (\pm 1.20) - 0.24 \ (\pm 0.04) \ \delta CH_2 N^+$
Model 4	$n = 9, r = 0.978, F_{1,7} = 152, s = 0.097 \ (\alpha < 0.001)$
QSAR	$p(IC_{50})_{\text{ex vivo}} = -3.82 \ (\pm 1.74) - 13.4 \ (\pm 2.81) \ (\text{N}^1 \text{ charge})$
Model 5	$n = 10, r = -0.860, s = 0.220, F_{1,8} = 22.8, \alpha < 0.005$
QSAR	$p(IC_{50})_{ex\ vivo} = 5.33\ (\pm 0.17) + 0.02\ (\pm 0.00)\ E_{LUMO}$
Model 6	$n = 10, r = 0.878, s = 0.207, F_{1,8} = 26.8, \alpha < 0.001$
QSAR	$p(IC_{50})_{ex\ vivo} = 8.83\ (\pm 0.85) + 0.01\ (\pm 0.00)\ E_{HOMO}$
Model 7	$n = 10, r = 0.874, s = 0.210, F_{1,8} = 5.81, \alpha < 0.001$
Molecular	Access the following web-servers to compute molecular descriptors: MoDel and e-dragon

Descriptor	n is the number of compounds, r is the correlation coefficient, s is the standard deviation, and data within parentheses are standard errors of estimate. F is the F ratio between the variances of observed and calculated activities. σ_p is a descriptor of the overall electronic effect of R_4 .
Reference	QSAR as a Tool for the Development of Potent Antiproliferative Agents by Inhibition of Choline Kinase. <i>Current Computer-Aided Drug Design</i> , 2007, 3, 297-313

Target Species	Human
Chemical Type	Biscationic dibromides
Mode of Action	Inhibitor
Activity Type	Antiproliferative activity against HT-29 Cell Line
QSAR Model 1	$p(IC_{50})_{HT-29} = 1.35 + 1.48 \ (\pm 0.17) \ p(IC_{50})_{\text{ex vivo}} + 0.25 \ (\pm 0.05) \ \Sigma f$ $n = 7, r = 0.987, s = 0.123, F_{2,4} = 75.4 \ (\alpha < 0.001)$
QSAR Model 2	$p(IC_{50})_{HT-29} = 29.68 - 3.90 (\pm 0.22) \delta * CH_2N^+ + 0.33 (\pm 0.04) \sum f$ $n = 8, r = 0.996, s = 0.098, F_{2,5} = 311 (\alpha < 0.001)$ Where $\delta * CH_2N^+ = 0.1 \times \delta CH_2N^+$
QSAR Model 3	$p(IC_{50})_{HT-29} = 7.32 (\pm 0.21) + 4.42 \times 10^{-2} (\pm 4.39 \times 10^{-3}) E_{LUMO}$ $n = 9, r = 0.967, s = 0.270, F_{1,7} = 102, \alpha < 0.001$
QSAR Model 4	$p(IC_{50})_{HT-29} = 5.36 - 0.96 (\pm 0.10) \sigma_R^+ + 0.35 (\pm 0.04) \operatorname{clog} P$ $n = 37, r = 0.907, s = 0.309, F_{2,34} = 78.6, \alpha < 0.001$
QSAR Model 5	$p(IC_{50})_{HT-29} = 5.36 - 1.31 (\pm 0.13) \sigma_R + 0.35 (\pm 0.04) \operatorname{clog} P$ $n = 37, r = 0.910, s = 0.304, F_{2,34} = 81.7, \alpha < 0.001$
QSAR Model 6	$p(IC_{50})_{HT-29} = 5.58 - 0.91(\pm 0.31) (clog P)^2 + 0.34 (\pm 0.16) clog P - 1.04(\pm 0.18) \sigma_R$ $n = 14, r = 0.934, s = 0.238, F_{3,10} = 23.8, \alpha < 0.001$
QSAR Model 7	$p(IC_{50})_{HT-29} = -2.66 - 0.03 (\pm 0.00) MR_8^2 + 0.10 (\pm 0.02) clog P + 1.05 (\pm 0.31) \pi_{linker} -3.73 (\pm 0.71) \sigma_R$

	$n = 40, r = 0.920, s = 0.223, F_{4,35} = 47.9, \alpha < 0.001$
QSAR Model 8	$p(IC_{50})_{HT-29 \text{ experimental}} = -0.35 + 1.05 (\pm 0.08) p(IC_{50})_{HT-29 \text{ theoretical}}$ $n = 40, r = 0.916, s = 0.220, F_{1,38} = 199, \alpha < 0.001$
Molecular Descriptor	Access the following web-servers to compute molecular descriptors: MoDel and e-dragon Σf is the sum of the Rekker hydrophobic fragmental constants for R4. n is the number of compounds, r is the correlation coefficient, s is the standard deviation, and data within parentheses are standard errors of estimate. F is the F ratio between the variances of observed and calculated activities. σ_p is a descriptor of the overall electronic effect of R4. n is the number of compounds, r is the correlation coefficient, s is the standard deviation, and data within parentheses are standard errors of estimate. F is the F ratio between the variances of observed and calculated activities. σ_p is a descriptor of the overall electronic effect of R4. σ_p : Hammett constant for $para$ substitution; σ_p^+ : electronic parameter for resonance effect; σ_R : Hammett constant for $para$ substitution; σ_R^+ : electronic parameter defined for systems where a + charge is delocalised between the substituent and the reaction center via "through resonance". Linker= clog P R4 – clog P H; R: Electronic parameter for resonance effects. n is the number of compounds, r is the correlation coefficient, s is the standard deviation, and data within parentheses are standard errors of estimate. F is the F ratio between the variances of observed and calculated activities. σ_p is a descriptor of the overall electronic effect of R4. σ_p : Hammett constant for $para$ substitution; σ_p^+ : electronic parameter for resonance effect; σ_R : Hammett constant for $para$ substitution; σ_p^+ : electronic parameter for resonance effect; σ_R : Hammett constant for $para$ substitution; σ_p^+ : electronic parameter for resonance effect; σ_R : Hammett constant for $para$ substitution; σ_R^+ : electronic parameter for resonance effect; σ_R^- : Hammett constant for $para$ substitution; σ_R^+ : electronic parameter defined for systems where a + charge is delocalised between the substitution and the reaction center vi
Reference	QSAR as a Tool for the Development of Potent Antiproliferative Agents by Inhibition of Choline Kinase. <i>Current Computer-Aided Drug Design</i> , 2007, 3, 297-313