Therapeutic Targets Database

QSAR Model

Target Name	Sodium channel
Target TTD ID	TTDS00155

Target Species	Human
Chemical Type	3-(4-phenoxyphenyl)pyrazoles
Mode of Action	Blocker
QSAR Model 1	$log(1/K_i) = 2.860(\pm 1.419)ClogP - 0.282(\pm 0.190)(ClogP)^2 + 1.138(\pm 0.516)I_1 - 0.604(\pm 2.368)$
	n =15, r = 0.975, r_{cv}^2 = 0.90, s = 0.33, $F_{3,11}$ = 70.32 (6.22), (ClogP) _o = 5.07
QSAR Model 2	$log(1/K_r) = 2.155(\pm 0.981)ClogP - 0.211(\pm 0.132)(Clog P)^2 + 0.600(\pm 0.357)I_1 - 0.708 (\pm 1.637)$
	n =15, r = 0.975, r_{cv}^2 = 0.88, s = 0.23, $F_{3,11}$ = 70.25 (6.22), (ClogP) _o = 5.11
QSAR	$log(1/K_i) = 4.819(\pm 1.859)ClogP - 0.540(\pm 0.252)(ClogP)^2 - 3.629(\pm 3.242)$
Model 3	n =15, r = 0.919, r_{cv}^2 = 0.73, s = 0.57, $F_{2,12}$ = 32.55(6.93), $(ClogP)_0$ = 4.46
QSAR Model 4	$log(1/K_r) = 3.187(\pm 1.086)ClogP - 0.348(\pm 0.147)(ClogP)^2 - 2.303(\pm 1.895)$
	n =15, r = 0.943, r_{cv}^2 = 0.67, s = 0.33, F ₂ , ₁₂ = 47.90(6.93), (ClogP) _o = 4.58
QSAR Model 5	$\log(1/K_i) = 1.406(\pm 0.200)\log(1/K_r) + 0.099(\pm 0.871)$
	n =15, r = 0.972, r_{cv}^2 = 0.81, s = 0.33, F _{1, 13} = 219.75(9.07)
QSAR Model 6	$log(1/IC_{50}) = 0.423(\pm 0.139)ClogP + 4.257(\pm 0.981)$
	n =12, r = 0.906, r_{cv}^2 = 0.7 $\ddot{4}$, s = 0.28, F _{1, 10} = 45.75(10.04)

	Access the following web-servers to compute molecular descriptors: MoDel and e-dragon
Molecular Descriptor	n is the number of data points; r, the correlation coefficient; r_{cv}^2 is the square of the crossvalidated correlation coefficient; s, the standard deviation; ClogP, the calculated hydrophobicity and F, F-ratio between the variances of calculated and observed activities. ClogP and CMR refer to calculated hydrophobicity and calculated molar refractivity. Pol referring to the polarizability of the molecule; Indicator variables I's which have been used to account for the effect of some specific features of the compounds; n is the number of data points, r is the correlation coefficient, r_{CV}^2 is the square of the cross-validated correlation coefficient obtained from leave-one-out jackknife procedure, whose value greater than 0.6 indicates excellent predictive ability of the equation, s is the standard deviation, and F is the F-ratio between the variances of calculated and observed activities; An indicator variable I1 which has been used for an amide group (CONH2) present in the compound. For a compound that has an amide group, I1 has been assigned a value of unity and for others its value is zero; Indicator variable I2 has been used for compounds that have symmetrical groups on both sides of the linker chain.
Reference	A QSAR Study on Some Series of Sodium and Potassium Channel Blockers. <i>Medicinal Chemistry</i> , 2009, <i>5</i> , 570-576

Target Species	Human
Chemical Type	2-alkyl-4-arylimidazoles
Mode of Action	Blocker
QSAR Model 1	$\begin{split} \log(1/K_i) &= 2.860(\pm 1.419) ClogP - 0.282(\pm 0.190) (ClogP)^2 + 1.138(\pm 0.516) I_1 \\ &- 0.604(\pm 2.368) \end{split}$ n =15, r = 0.975, $r_{cv}^2 = 0.90$, s = 0.33, $F_{3,11} = 70.32$ (6.22), $(ClogP)_0 = 5.07$
QSAR Model 2	$\begin{split} \log(1/K_r) &= 2.155(\pm 0.981) \text{ClogP} - 0.211(\pm 0.132)(\text{Clog P})^2 + \ 0.600(\pm 0.357) \text{I}_1 \\ &- 0.708~(\pm 1.637) \\ \text{n} = 15, \ r = 0.975, \ r_{cv}{}^2 = 0.88, \ s = 0.23, \ F_{3,11} = 70.25~(6.22), \ (\text{ClogP})_0 = 5.11 \end{split}$

QSAR Model 3	$log(1/K_i) = 4.819(\pm 1.859)ClogP - 0.540(\pm 0.252)(ClogP)^2 - 3.629(\pm 3.242)$
	n =15, r = 0.919, r_{cv}^2 = 0.73, s = 0.57, $F_{2,12}$ = 32.55(6.93), $(ClogP)_0$ = 4.46
QSAR Model 4	$log(1/K_r) = 3.187(\pm 1.086)ClogP - 0.348(\pm 0.147)(ClogP)^2 - 2.303(\pm 1.895)$
	n =15, r = 0.943, r_{cv}^2 = 0.67, s = 0.33, F ₂ , ₁₂ = 47.90(6.93), (ClogP) _o = 4.58
QSAR Model 5	$\log(1/K_i) = 1.406(\pm 0.200)\log(1/K_r) + 0.099(\pm 0.871)$
	$n = 15, r = 0.972, r_{cv}^2 = 0.81, s = 0.33, F_{1, 13} = 219.75(9.07)$
QSAR Model 6	$log(1/IC_{50}) = 0.423(\pm 0.139)ClogP + 4.257(\pm 0.981)$
	$n = 12, r = 0.906, r_{cv}^2 = 0.7\ddot{4}, s = 0.28, F_{1, 10} = 45.75(10.04)$
	Access the following web-servers to compute molecular descriptors: MoDel and e-dragon
Molecular Descriptor	n is the number of data points; r, the correlation coefficient; r_{cv}^2 is the square of the crossvalidated correlation coefficient; s, the standard deviation; ClogP, the calculated hydrophobicity and F, F-ratio between the variances of calculated and observed activities. ClogP and CMR refer to calculated hydrophobicity and calculated molar refractivity. Pol referring to the polarizability of the molecule; Indicator variables I's which have been used to account for the effect of some specific features of the compounds; n is the number of data points, r is the correlation coefficient, r_{CV}^2 is the square of the cross-validated correlation coefficient obtained from leave-one-out jackknife procedure, whose value greater than 0.6 indicates excellent predictive ability of the equation, s is the standard deviation, and F is the F-ratio between the variances of calculated and observed activities; An indicator variable I1 which has been used for an amide group (CONH2) present in the compound. For a compound that has an amide group, I1 has been assigned a value of unity and for others its value is zero; Indicator variable I2 has been used for compounds that have symmetrical groups on both sides of the linker chain.
Reference	A QSAR Study on Some Series of Sodium and Potassium Channel Blockers. <i>Medicinal Chemistry</i> , 2009, <i>5</i> , 570-576