Therapeutic Targets Database

Target Name	AT ₁ Receptor
Target TTD ID	TTDS00267

Target Species	Human
Chemical Type	Triazoline derivatives
Mode of Action	Antagonist
QSAR	$-\log AT_1 = -0.074 \ (\pm 0.015) MR_4 + 0.826 \ (\pm 0.157)$
Model 1	n = 16, r = 0.800, s = 0.391, F = 24.498
QSAR	$-\log AT_1 = 6.800 \ (\pm 1.219)\sigma_4 + 0.784 \ (\pm 0.137)$
Model 2	n = 16, r = 0.830, s = 0.363, F = 31.103
QSAR	$-\log IC_{50} = -7.083$ (hydrophobicity at SS1x) -3.004 (hydrophobicity at SS1y) $+0.827$
Model 3	$n = 16, r = 0.841, F_{2,13} = 15.701$
QSAR	$-\log IC_{50} = 0.181$ (refractivity at SS2x) -7.355 (hydrophobicity at SS2y) $+0.448$
Model 4	$n = 16, r = 0.864, F_{2,13} = 19.178$
	Access the following web-servers to compute molecular descriptors: MoDel and e-dragon
	Hydrophobic $(\pi_s, \pi_3, \pi_4, \pi_5)$, steric (MR_s, MR_3, MR_4, MR_5) and electronic $(\mathcal{F}_s, \mathcal{F}_3, \mathcal{F}_4, \mathcal{F}_5;; \mathcal{R}_s, \mathcal{R}_3, \mathcal{R}_4, \mathcal{R}_5)$
	$\mathcal{R}_5; \sigma_s, \sigma_3, \sigma_4, \sigma_5$) where the subscript numbers 3, 4 and 5 correspond to the physiochemical parameters
Molecular	of the substituents R ₃ , R ₄ , R ₅ respectively, while s represents the sum of the physicochemical
Descriptor	parameters values at R_1 and R_2 positions.
	Atomic hydrophobicity indexes at the hydrophobic sites in the vicinity of R_1 substituent (SS1x) and of
	R ₄ substituent (SS1y); atomic hydrophobic index at the hydrophobic site in the vicinity of R ₄
	substituent (SS2y); Atomic refractivity index at steric site in the vicinity of R ₂ substituent (SS2x)

Reference	3-D QSAR Studies of Triazolinone Based Balanced AT ₁ /AT ₂ Receptor Antagonists. Bioorganic &
Reference	Medicinal Chemistry 9 (2001) 291-300

Target Species	Human
Chemical Type	Benzoyliminothiadiazoline derivatives
Mode of Action	Antagonist
QSAR Model 1	pKi = 5.173 (± 0.654) + 0.873 (± 0.223) L_{10} (n = 30, $r^2 = 0.679$, $s = 0.483$)
QSAR Model 2	pKi = $-0.161 + 0.954 L_{10} - 0.589 \pi_1 - 0.329 (L_2)^2 + 2.677 L_2 - 0.484 \sigma_1$ $(\pm 3.409) (\pm 0.134) (\pm 0.223) (\pm 0.158)$ $(\pm 1.441) (\pm 0.374)$ $(n = 30, r^2 = 0.914, s = 0.270, F(5/24) = 51.18)$
QSAR Model 3	pKi = 0.287 + 0.709 L_{10} - 0.608 π_1 -0.337 $(L_2)^2$ + 2.731 L_2 - 0.642 σ_1 + 1.145 F_{10} (± 3.040) (± 0.218) (± 0.198) (± 0.140) (± 1.278) (± 0.351) (± 0.854) $(n = 30, r^2 = 0.936, s = 0.239, F(6/23) = 55.77)$
QSAR Model 4	pKi = 0.395 + 0.692 L_{1o} - 0.344 $(L_2)^2$ + 2.813 L_2 - 0.603 π_1 -1.295 F_{1m} - 1.332 F_{1p} (± 2.563) (± 0.137) (± 0.118) (± 1.077) (± 0.166) (± 0.543) (± 0.543) ($n = 30$, $r^2 = 0.955$, $s = 0.201$, $F(6/23) = 79.87$, $L_2opt = 4.089$)
Molecular Descriptor	Access the following web-servers to compute molecular descriptors: MoDel and e-dragon STERIMOL parameter L_{10} which indicated the steric effect of ortho substituents represented a moderate correlation. Hansch-Fujita substituent constants π_1 , Hammett constants σ_1 , and STERIMOL parameter L_2 to eq. 1 resulted in eq. 2 with a good correlation. Swain-Lupton field effect parameters F_{10} . Although eq. 3 represented a better correlation, however, it would be noted that the contributions of σ_1 and F_{10} were compensated each other. Therefore, we attempted analyses to use Swain-Lupton F_1 and F_1 (resonance effect) parameters instead of σ_1 . As the results of analyses, it was found that there were contributions of neither F_{10} nor F_1 parameter to the binding affinity, and that the following eq.4 using F_{1m} and F_{1p} parameters represented the best correlation.

	Reference	Quantitative Structure-Activity Relationships of Benzoyliminothiadiazoline Derivatives as Angiotensin II
		Receptor Antagonists. Bioorganic & Medicinal Chemistry Letters. Vol. 7. No. 4, pp. 385-388, 1997

Target Species	Human
Chemical Type	6-substituted quazinolin-4(3H)-ones
Mode of Action	Antagonist
QSAR Model 1	$pIC_{50} = 7.63(0.12) + \begin{cases} -0.782(0.083) & Acid = CO2H \\ +0.782(0.083) & Acid = CN4H \end{cases} + 0.0113(0.0019)V$ $-0.406(0.073)\pi - 1.68(0.35)\sigma_{I}$ $R^{2} = 0.82, s = 0.36, n = 41, F = 42.0$
Molecular Descriptor	R ₆ -substituent size (V), lipophilicity (π), inductive sigma effect (σ_l), resonance sigma effect (σ_d), l* and sensitivity of σ_d to electronic demand (σ_e).
Reference	Quinazolinones 2: QSAR and In vivo characterization of AT1 selective AII antagonists. <i>Bioorganic & Medicinal Chemistry Letters</i> , Vol 3, No. 6, pp. 1299-1304, 1993