Therapeutic Targets Database

QSAR Model

Target Name	α1-Adrenoceptor
Target TTD ID	TTDS00027

Target Species	Human
Chemical Type	3-Arylpiperazinylalkylpyrrolo[3,2-d]pyrimidine-2,4-dione derivatives
Mode of Action	Ligand
QSAR Model 1	Aff = $21.0309 + 0.715137$ HOMO - 1.53546 S_ssCH2 + 0.089448 MR - 0.00095 PMI-mag $r^2 = 0.920222$, CV $r^2 = 0.734$, LOF = 0.200777
QSAR Model 2	$\label{eq:magnetic} \begin{tabular}{lllllllllllllllllllllllllllllllllll$
QSAR Model 3	$\label{eq:mag} \begin{tabular}{lllllllllllllllllllllllllllllllllll$
QSAR Model 4	$\label{eq:Aff} Aff = -1.42385 + 0.218582 \ \mathrm{MR} - 0.000713 \ \mathrm{PMI} \\ \mathrm{-mag} - 1.41618 \ \mathrm{S}_{\mathrm{-ssCH2}} + 13.7639 \ \mathrm{Jurs} \\ \mathrm{-RPCG} \\ r^2 = 0.881415, \ \mathrm{LOF} = 0.298444$
QSAR Model 5	Aff = $35.7893 - 0.001058$ PMI-mag + 1.20452 HOMO - 1.71175 S_ssCH2 + 0.430969 Jurs-RPCS $r^2 = 0.877877$, LOF = 0.307347
QSAR Model 6	$\label{eq:Aff} Aff = 29.5356 - 0.033243 \ {\rm S_sCl} - 1.4278 \ {\rm S_ssCH2} - 0.000758 \ {\rm PMI-mag} + 0.880362 \ {\rm HOMO}$ $r^2 = 0.870094, \ {\rm LOF} = 0.326934$
QSAR Model 7	$\label{eq:mag} \begin{split} \text{Aff} &= 18.8665 + 1.10796 \; \text{Jurs-RNCS} - 1.43661 \; \text{S}_\text{ssCH2} + 0.093934 \; \text{MR} - 0.000938 \; \text{PMI-mag} \\ &+ 0.664025 \; \text{HOMO} \end{split}$ $r^2 &= 0.941940, \; \text{LOF} = 0.328768 \end{split}$
QSAR	$\label{eq:Aff} Aff = 30.219 - 0.000863 \ PMI - mag + 0.938424 \ HOMO - 1.40417 \ S_ssCH2 + 0.037602 \ S_ssOmegamma - 0.000863 \ PMI - mag + 0.938424 \ HOMO - 1.40417 \ S_ssCH2 + 0.037602 \ S_ssOmegamma - 0.000863 \ PMI - mag + 0.938424 \ HOMO - 1.40417 \ S_ssCH2 + 0.037602 \ S_ssOmegamma - 0.000863 \ PMI - mag + 0.938424 \ HOMO - 0.000863 \ PMI - mag + 0.938424 \ HOMO - 0.000863 \ PMI - mag + 0.000863 \ PMI $

Model 8	$r^2 = 0.869239$, LOF = 0.329087
	Access the following web-servers to compute molecular descriptors: MoDel and e-dragon
Molecular Descriptor	MR, Thermodynamic Molar refractivity; Density, Spatial Molecular density;PMI-mag, Spatial Principal moment of inertia; Dipole-mag, Electronic Dipole moment; HOMO, Electronic Highest occupied molecular orbital energy; LUMO, Electronic Lowest unoccupied molecular orbital energy; Sr, Electronic Superdelocalizability; Jurs-RPCG, Spatial Relative positive charge; Jurs-RNCG, Spatial Relative negative charge; Jurs-RPCS, Spatial Relative positive charge surface area; Jurs- RNCS, Spatial Relative negative charge surface area; Jurs-RPSA, Spatial Relative polar surface area; S_sCH3, Electrotopological Sum for a methyl group; S_sSCH2, Electrotopological Sum for a methylene group; S_dssC, Electrotopological Sum for a carbon atom with a double bond and two single bonds (i.e., a carbonyl carbon); S_aasC, Electrotopological Sum for a carbon atom with a single bond and two aromatic bonds (i.e., a carbon of the pyrrole ring); S_sSNH, Electrotopological Sum for a nitrogen atom linked to a hydrogen and involved in two additional single bonds;(i.e., the NH group of the pyrimidinedione system); S_aaNH, Electrotopological Sum for a nitrogen atom linked to a hydrogen and involved in two additional aromatic bonds (i.e., the NH group of the pyrrole ring); S_dO, Electrotopological Sum for an oxygen atom bound through two single bonds (i.e., the oxygen of a methoxy group); S_sCl, Electrotopological Sum for a chlorine atom; Aff represents log(1/ <i>K</i> i) where <i>K</i> i is the affinity of compounds toward R1-ARs, expressed in nM. <i>r</i> 2, CV <i>r</i> 2, and LOF are the correlation coefficient, the cross-validated correlation coefficient, and the lack- of-fit values, respectively.
Reference	Synthesis of 3-Arylpiperazinylalkylpyrrolo[3,2-d]pyrimidine-2,4-dione Derivatives as Novel, Potent, and Selective α 1-Adrenoceptor Ligands. <i>J. Med. Chem.</i> 2005, 48, 2420-2431

Target Species	Human
Chemical Type	Arylpiperazines
Mode of Action	Antagonist

QSAR Model 1	$ pK_2 = 31.556 \ (\pm 10.768) + 5.221(\pm 1.707) \ S_{10} - 1.382 \ (\pm 0.238) \ S_{16} \\ - 2.197 \ (\pm 0.832) \ S_{21} - 1.560 \ (\pm 0.367) \ I_1 \\ n = 32; R = 0.807; \% EV = 65.18; R_A^2 = 0.600; F(4, 27) = 12.634; \\ p < 0.0000; S.E.E. = 0.646 $
QSAR Model 2	$pK_{2} = 26.139 (8.839) + 4.719 (\pm 1.389) S_{10} - 1.689 (\pm 0.209) S_{16} - 1.705 (\pm 0.686) S_{21} - 1.649 (\pm 0.298) I_{1} + 1.709 (\pm 0.440) I_{2}$ $n = 32; R = 0.883; \% \text{EV} = 77.97; \text{R}_{\text{A}}^{2} = 0.737; F(5, 26) = 18.399; p < 0.0000; \text{S.E.E.} = 0.523$
QSAR Model 3	$pK_{2} = 26.956 \ (\pm 8.098) + 3.841(\pm 1.321) \ S_{10} - 1.915 \ (\pm 0.212) \ S_{16} - 1.671 \ (\pm 0.628) \ S_{21} - 1.907 \ (\pm 0.292)I_{1} + 1.871 \ (\pm 0.408)I_{2} - 0.756 \ (\pm 0.308) \ I_{3}$ $n = 32; R = 0.907; \% \text{EV} = 82.25; R_{\text{A}}^{2} = 0.780; \ F(6, 25) = 19.304; p < 0.0000; \text{S.E.E.} = 0.479$
Molecular Descriptor	Access the following web-servers to compute molecular descriptors: MoDel and e-dragon S10 (E-state index of atom 10). E-state indices of atoms 8, 16, 21—S8, S16 and S21 I1, I2, represent presence of CONHPr group at ortho position and Br at meta position of the phenyl ring respectively. n is number of data points, R is correlation coefficient, %EV, R_A^2 , F, p, S.E.E. are percentage of explained variance, adjusted R ² , ratio between the variances of observed and calculated activities, probability factor related to F-ratio and standard error of estimate respectively. DC is the deleted compound behaves as outliers may act through a different mechanism of action. The statistical quality of eq 3 was found to be of significant. It explains 87.30% of the variances in the activity data.
Reference	QSAR Study on the Affinity of Some Arylpiperazines towards the 5-HT1A/α1-Adrenergic Receptor Using the E-State Index. <i>Bioorganic & Medicinal Chemistry Letters</i> 13 (2003) 2837–2842

Target Species	Human
Chemical Type	Arylpiperazinylthioalkyl derivatives
Mode of	Binder

Action	
QSAR Model 1	$ \begin{array}{l} pK_i(\alpha_1) = 0.717 + 14.496(2.028) \text{GGI9} + 1.915(0.378) \text{GATS3e} + 0.132(0.017) \text{H} - 047 \\ n = 18, \ r = 0.942, \ s = 0.207, \ F = 36.520, \ Q_{\text{LOO}}^2 = 0.798, \\ Q_{\text{L3O}}^2 = 0.731, \ \text{FIT} = 4.058, \\ \text{LOF} = 0.075, \ \text{AIC} = 0.068, \ r_{\text{randY}}^2(\text{s.d.}) = 0.366(0.154), \\ r_{\text{Test}}^2 = 0.749, \ R_p^2 = 0.766 \\ \end{array} $
Molecular Descriptor	Access the following web-servers to compute molecular descriptors: MoDel and e-dragon Descriptor classes and identified descriptors in modeling the α 1-binding activity of arylpiperazinylthioalkyl derivatives.
	 Descriptor class: Identified descriptors and their average regression coefficient (incidence) CONST: AMW, 0.400(1); nDB, 0.360(1); nBnz, 0.421(1); TOPO: AAC, 2.287(2); ZM2V, 0.008(1); PJI2, 3.427(4); IVDE, 2.973(3); IC3, 3.081(1); piPC03, 0.016(1); BCUT: BEHm4, 11.776(1); BELm4, 3.791(1); BEHv8, 6.231(3); GALVEZ: GGI6, 3.692(1); GGI8, -4.563(1); GGI9, 12.974(6);
	GGI10, -15.802(1); JGI1, -11.673(2); 2D-AUTO : ATS6m, 0.059(1); MATS3m, 42.727(3); MATS4m, 60.897(1); MATS3v, 7.851(3); MATS6v, 5.357(2); MATS1e, 2.862(1); MATS2e, 3.951(3); MATS6e, 4.000(1); MATS7e, 5.209(8); MATS6p, 5.051(2); GATS3e, 1.915(1); GATS4p, 4.962(1); GATS5p, 1.872(1); GATS6p, 4.538(2); ACF : C-026, 0.341(1); C-034, 0.209(2); H-047, 0.107(6); H-053, 0.291(2). Binding data pertaining to α_1 -adrenergic receptor.
Reference	A rationale for the activity profile of arylpiperazinylthioalkyls as 5-HT _{1A} -serotonin and α_1 -adrenergic receptor ligands. <i>European Journal of Medicinal Chemistry</i> 45 (2010) 1927–1934