Therapeutic Targets Database

QSAR Model

Target Name	Pseudomonas aeruginosa Deacetylase LpxC				
Target TTD ID	TTDR00865				

Target Species	Human					
Chemical Type	2-Aryloxazolines					
Mode of Action	Inhibitor					
QSAR Model 1	$\log (1/IC_{50}) = 5.155 65 - 1.596 14 \text{mor} 14 \text{v} - 0.9239 < 2.485 - \text{H2U} > \\ + 1.7411 < \text{mor} 24 \text{U} - 0.104 > - 3.1202 < \text{mor} 24 \text{U} - 0.505 > \\ + 81.1483 < 0.101 - \text{HATS2p} > - 5.09371 < \text{mor} 26 \text{p} + 0.157 > \\ I = 34, \text{LOF} = 0.347, \ r^2 = 0.813, \ r^2 \text{adj} = 0.771, \ \text{F-test} = 17.515, \ \text{LSE} = 0.087, \\ I = 0.732, \ \text{Bsr}^2 = 0.813, \ \text{Bsr}^2 \ \text{error} = 0.004, \ r^2_{\text{pred}} = 0.857$					
Molecular Descriptor	Access the following web-servers to compute molecular descriptors: MoDel and e-dragon N is number of compounds in the training set; LOF is the lack of fit; r^2 is the squared correlation coefficient; r^2_{adj} is the square of the adjusted correlation coefficient; F-test is a variance-related statistic that compares two models differing by one or more variable to see if the more complex model is more reliable than the less complex one; LSE is the least-square error; q^2 is the square of the correlation coefficient of the cross-validation; r^2_{pred} is the predicted correlation coefficient calculated from the predicted activity of the test set compound. Morse descriptors (mor14v, mor24U, and mor26p).					
Reference	Evaluation of <i>Pseudomonas aeruginosa</i> Deacetylase LpxC Inhibitory Activity of Dual PDE4-TNFr Inhibitors: A Multiscreening Approach. <i>J. Chem. Inf. Model.</i> 2007, 47, 1188-1195					

Target	Human	
--------	-------	--

Species	
Chemical Type	Aroylserines
Mode of Action	Inhibitors
QSAR Model 1	$\begin{split} \text{Log (1/IC}_{50}) &= 5.155\ 65 - 1.596\ 14\text{mor}14\text{v} - 0.9239 < 2.485 - \text{H2U}> \\ & + 1.7411 < \text{mor}24\text{U} - 0.104> - 3.1202 < \text{mor}24\text{U} - 0.505> \\ & + 81.1483 < 0.101 - \text{HATS2p}> - 5.09371 < \text{mor}26\text{p} + 0.157> \\ N &= 34, \text{LOF} = 0.347, \ r^2 = 0.813, \ r^2 \text{adj} = 0.771, \ \text{F-test} = 17.515, \ \text{LSE} = 0.087, \\ q^2 &= 0.732, \ \text{Bsr}^2 = 0.813, \ \text{Bsr}^2 \ \text{error} = 0.004, \ r^2_{\text{pred}} = 0.857 \end{split}$
Molecular Descriptor	Access the following web-servers to compute molecular descriptors: MoDel and e-dragon N is number of compounds in the training set; LOF is the lack of fit; r^2 is the squared correlation coefficient; r_{adj}^2 is the square of the adjusted correlation coefficient; F-test is a variance-related statistic that compares two models differing by one or more variable to see if the more complex model is more reliable than the less complex one; LSE is the least-square error; q^2 is the square of the correlation coefficient of the cross-validation; r_{pred}^2 is the predicted correlation coefficient calculated from the predicted activity of the test set compound. Morse descriptors (mor14v, mor24U, and mor26p).
Reference	Evaluation of <i>Pseudomonas aeruginosa</i> Deacetylase LpxC Inhibitory Activity of Dual PDE4-TNFr Inhibitors: A Multiscreening Approach. <i>J. Chem. Inf. Model.</i> 2007, 47, 1188-1195

Target Species	Human			
Chemical Type	- Arylthiazolines			
Mode of Action	Inhibitors			

	$Log (1/IC_{50}) = 5.155 65 - 1.596 14mor14v - 0.9239 < 2.485 - H2U>$
QSAR Model 1	+ 1.7411 < mor24U - 0.104 > - 3.1202 < mor24U - 0.505 >
	+81.1483 < 0.101 - HATS2p > -5.09371 < mor26p + 0.157 >
Wiodei i	$N = 34$, LOF = 0.347, $r^2 = 0.813$, $r^2 \text{adj} = 0.771$, F-test = 17.515, LSE = 0.087,
	$q^2 = 0.732$, Bsr ² = 0.813, Bsr ² error = 0.004, $r_{\text{pred}}^2 = 0.857$
	Access the following web-servers to compute molecular descriptors: MoDel and e-dragon
Molecular Descriptor	N is number of compounds in the training set; LOF is the lack of fit; r^2 is the squared correlation coefficient; r_{adj}^2 is the square of the adjusted correlation coefficient; F-test is a variance-related statistic that compares two models differing by one or more variable to see if the more complex model is more reliable than the less complex one; LSE is the least-square error; q^2 is the square of the correlation coefficient of the cross-validation; r_{pred}^2 is the predicted correlation coefficient calculated from the predicted activity of the test set compound. Morse descriptors (mor14v, mor24U, and mor26p).
Reference	Evaluation of <i>Pseudomonas aeruginosa</i> Deacetylase LpxC Inhibitory Activity of Dual PDE4-TNFr Inhibitors: A Multiscreening Approach. <i>J. Chem. Inf. Model.</i> 2007, 47, 1188-1195

Target Species	Pseudomonas aeruginosa					
Chemical Type	2-Aryloxazolines					
Mode of Action	Inhibitor					
QSAR Model 1	$\log(1/\text{IC}_{50}) = -7.04877 + 43.526 \times \text{mats} 1\text{v}^2 + 3.48946 \times \text{VEA1} \\ -1.75733 \times \text{SPP}^2 - 0.1086 \times \text{X4V}^2 - 0.0232 \times \langle \text{D/Dr}05 - 88.418 \rangle$ $N = 37, \text{ LOF} = 0.314, \ r^2 = 0.703, \ r_{\text{adi}}^2 = 0.655, \ F\text{-test} = 14.698,$ $\text{LSE} = 0.155, \ r = 0.839, \ \vec{q}^2 = 0.584, \ \text{BS} r^2 \pm \text{SD} = 0.704 \pm .006, r_{\text{pred}}^2 = 0.107$					

QSAR Model 3 $\log(1/\Gamma C_{50}) = 3.9227 + 165.06 \times MATS1P^{\circ}2 + 0.0048 \times MDDD^{\circ}2$ $+ 2.1208 \times \langle -0.023 - MATS8m \rangle - 53.057 \times (0.223 - VEP2)$ $N = 17$, LOF = 0.163, $r^{2} = 0.944$, $q^{2} = 0.926$, $BSr^{2} \pm SD = 0.904 \pm 0.00$, $r_{pred}^{2} = 0.608$. Access the following web-servers to compute molecular descriptors: MoDel and e-dragon Mats1v (a 2D-autocorrelation descriptor) which is Moran autocorrelation lag one weighted by van der Waals volumes; VEA (an eigenvalue-based indices descriptor) which is an Eigenvector coefficient sum from adjacency matrix; SPP (a charge descriptor) which is a sub-molecular polarity parameter; X4V (connectivity descriptor) which is a valence connectivity index chi-4; D/Dr05 (a topological descriptor) which is a distance/detour ring index of order 5. N is the number of molecules in training set, LOF is lack of fit score that resists overfitting, r^{2} is squared correlation coefficient, and r^{2} asj is square of adjusted correlation coefficient. S.No. Descriptors Symbol Descriptors' meaning Moran autocorrelation lag one weighted by van der Waals volume Descriptor Mats1v (I(d)) Moran autocorrelation lag one weighted by atomic masses 4 GATS5m (C(d)) Geary autocorrelation lag one weighted by atomic masses 5 SPP A Submolecular polarity parameter 6 X4V $^{m}X_{q}^{p}$ Valence connectivity index chi-4 VEA1 λ_{1}^{A} Eigenvector coefficient sum from adjacency matrix 8	QSAR Model 2	$\log(1/\text{IC}_{50}) = 5.3512 + 0.0795 \times \text{MAXDP}^{2} + 16.6973 \times \langle 1.961 - \text{JHETE} \rangle$ $-1.755 \times \text{GATS5m}^{2} - 2.8359 \times \langle \text{vez1} - 4.509 \rangle$ $N = 20, \text{ LOF} = 0.170, \ r^{2} = 0.904, \ r_{\text{adj}}^{2} = 0.878, \ F\text{-test} = 35.126,$ $\text{LSE} = 0.042, \ r = 0.951, \ q^{2} = 0.805, \ \text{BS}r^{2} \pm \text{SD} = 0.904 \pm 0.003, \ r_{\text{pred}}^{2} = 0.598.$			
Mats1v (a 2D-autocorrelation descriptor) which is Moran autocorrelation lag one weighted by van der Waals volumes; VEA (an eigenvalue-based indices descriptor) which is an Eigenvector coefficient sum from adjacency matrix; SPP (a charge descriptor) which is a sub-molecular polarity parameter; X4V (connectivity descriptor) which is a valence connectivity index chi-4; D/Dr05 (a topological descriptor) which is a distance/detour ring index of order 5. N is the number of molecules in training set, LOF is lack of fit score that resists overfitting, r^2 is squared correlation coefficient, and r^2 adj is square of adjusted correlation coefficient. S. No. Descriptors Symbol Descriptors' meaning 1 Mats1v ($I(d)$) Moran autocorrelation lag one weighted by van der Waals volume 2 Mats1p ($I(d)$) Moran autocorrelation lag one weighted by atomic polarizability 3 Mats8m ($I(d)$) Moran autocorrelation lag one weighted by atomic masses 4 GATS5m ($C(d)$) Geary autocorrelation lag one weighted by atomic masses 5 SPP A Submolecular polarity parameter 6 X4V ${}^mX_q^p$ Valence connectivity index chi-4 7 VEA1 λ_i^A Eigenvector coefficient sum from adjacency matrix Eigenvector coefficient sum from z weighted distance matrix (Barysz matrix)	-	$+ 2.1208 \times \langle -0.023 - MATS8m \rangle - 53.057 \times \langle 0.223 - VEP2 \rangle$			
(Barysz matrix)		Mats1v (Waals vo sum from X4V (co descripto N is the r squared o S. No. 1 2 3 4 5 6 7	a 2D-autocorre folumes; VEA (an adjacency mannectivity descriptor) which is a discorrelation coeff Descriptors Mats1v Mats1p Mats8m GATS5m SPP X4V VEA1	elation descriptor an eigenvaluntrix; SPP (a riptor) which istance/deto ecules in transficient, and Symbol $(I(d))$ $(I(d))$ $(I(d))$ $(C(d))$ Δ mX_q^v λ_i^A	riptor) which is Moran autocorrelation lag one weighted by van der ne-based indices descriptor) which is an Eigenvector coefficient a charge descriptor) which is a sub-molecular polarity parameter; the is a valence connectivity index chi-4; D/Dr05 (a topological pur ring index of order 5. Inning set, LOF is lack of fit score that resists overfitting, r² is lar² adj is square of adjusted correlation coefficient. Descriptors' meaning Moran autocorrelation lag one weighted by van der Waals volume Moran autocorrelation lag one weighted by atomic polarizability Moran autocorrelation lag one weighted by atomic masses Geary autocorrelation lag one weighted by atomic masses Submolecular polarity parameter Valence connectivity index chi-4 Eigenvector coefficient sum from adjacency matrix
				$rac{\lambda_i^D}{T_lpha^E}$	(Barysz matrix)

	10	MDDD	Δσ	Mean distance degree deviation	
	11	D/Dr05	$[D/\!\varDelta]_{ij}$	Distance/detour ring index of order 5	
	12	JHETE	J^{x}	Balaban type index from electronegativity weighted distance matrix	
	13	VEP2	λ_i^{lpha}	Average coefficient sum from polarizability weighted distance matrix	
	MAXDP, maximal electrotopological positive variation, which is connectivity indices descrip				
	JHETE, Balaban-type index from electronegativity weighted distance matrix, which is eigenvalue				
	based indices descriptor; GATS5m, Geary autocorrelationlag 5/weighted by atomic masses, which is				
	2D-autocorrelation descriptor; vez1, Eigenvector coefficient sum from z-weighted distance matrix, which is eigenvalue-based descriptor.				
	MATS	P, Moran auto	correlation la	ag 1/weighted by atomic polarizability, which is 2D-	
	autocor	relation descrip	tor; MDDD	which is connectivity based indices descriptor; MATS8m, Moran	
	autocor	relation - lag 8/	weighted by	atomic masses, which is 2D-autocorrelation descriptor; VEP2,	
	average eigenvector coefficient sum from polarizability weighted distance matrix, which is				
	eigenvalue-based descriptor.				
	Cluster	analysis and	two-dimens	ional quantitative structure-activity relationship (2D-QSAR) of	
Reference	Pseudomonas aeruginosa deacetylase LpxC inhibitors. Bioorganic & Medicinal Chemistry Letters 16				
	(2006)	5136–5143			

Target Species	Pseudomonas aeruginosa					
Chemical Type	Aroylserines					
Mode of Action	Inhibitor					
QSAR Model 1	$\log(1/\text{IC}_{50}) = -7.04877 + 43.526 \times \text{mats} 1\text{v}^2 + 3.48946 \times \text{VEA1} \\ -1.75733 \times \text{SPP}^2 - 0.1086 \times \text{X4V}^2 - 0.0232 \times \langle \text{D/Dr}05 - 88.418 \rangle$ $N = 37, \text{ LOF} = 0.314, \ r^2 = 0.703, \ r_{\text{adi}}^2 = 0.655, \ F\text{-test} = 14.698,$ $\text{LSE} = 0.155, \ r = 0.839, \ \vec{q}^2 = 0.584, \ \text{BS} r^2 \pm \text{SD} = 0.704 \pm .006, r_{\text{pred}}^2 = 0.107$					

QSAR Model 2	$\log(1/\text{IC}_{50}) = 5.3512 + 0.0795 \times \text{MAXDP}^2 + 16.6973 \times \langle 1.961 - \text{JHETE} \rangle \\ -1.755 \times \text{GATS5m}^2 - 2.8359 \times \langle \text{vez1} - 4.509 \rangle \\ N = 20, \text{ LOF} = 0.170, \ r^2 = 0.904, \ r_{\text{adj}}^2 = 0.878, \ F\text{-test} = 35.126, \\ \text{LSE} = 0.042, \ r = 0.951, \ q^2 = 0.805, \ \text{BS} r^2 \pm \text{SD} = 0.904 \pm 0.003, \ r_{\text{pred}}^2 = 0.598.$				
QSAR Model 3	$\begin{split} \log(1/\text{IC}_{50}) = & 3.9227 + 165.06 \times \text{MATS1P}^2 + 0.0048 \times \text{MDDD}^2 \\ & + 2.1208 \times \langle -0.023 - \text{MATS8m} \rangle - 53.057 \times \langle 0.223 - \text{VEP2} \rangle \\ N = & 17, \text{ LOF} = 0.163, \ r^2 = 0.944, \ r_{\text{adj}}^2 = 0.925, \ F\text{-test} = 50.359, \\ \text{LSE} = & 0.028, \ r = 0.944, \ q^2 = 0.906, \ \text{BS} \\ r^2 \pm \text{ SD} = 0.904 \pm 0.00, \ r_{\text{pred}}^2 = 0.608. \end{split}$				
	Access th	he following wo	eb-servers t	o compute molecular descriptors: MoDel and e-dragon	
	Mats1v (a 2D-autocorrelation descriptor) which is Moran autocorrelation lag one weighted by van der Waals volumes; VEA (an eigenvalue-based indices descriptor) which is an Eigenvector coefficient sum from adjacency matrix; SPP (a charge descriptor) which is a sub-molecular polarity parameter; X4V (connectivity descriptor) which is a valence connectivity index chi-4; D/Dr05 (a topological descriptor) which is a distance/detour ring index of order 5.				
				uning set, LOF is lack of fit score that resists overfitting, r^2 is r^2_{adj} is square of adjusted correlation coefficient.	
	S. No.	Descriptors	Symbol	Descriptors' meaning	
Molecular	1	Mats1v	(I(d))	Moran autocorrelation lag one weighted by van der Waals volume	
Descriptor	2	Mats1p	(I(d))	Moran autocorrelation lag one weighted by atomic polarizability	
	3	Mats8m	(I(d))	Moran autocorrelation lag one weighted by atomic masses	
	4	GATS5m	(<i>C</i> (<i>d</i>))	Geary autocorrelation lag one weighted by atomic masses	
	5	SPP	Δ	Submolecular polarity parameter	
	6	X4V	$^mX_q^v$	Valence connectivity index chi-4	
	7	VEA1	λ_i^A	Eigenvector coefficient sum from adjacency matrix	
	8	VEZ1	λ_i^D	Eigenvector coefficient sum from z weighted distance matrix (Barysz matrix)	
	9	MAXDP	T_{α}^{E}	Maximal electrotopological positive variation	

	10	MDDD	Δσ	Mean distance degree deviation	
	11	D/Dr05	[D/\(\Delta\)]_{ij}	Distance/detour ring index of order 5	
	12	JHETE	J^{x}	Balaban type index from electronegativity weighted distance matrix	
	13	VEP2	λ_i^{lpha}	Average coefficient sum from polarizability weighted distance matrix	
	MAXDP, maximal electrotopological positive variation, which is connectivity indices descrip				
	JHETE, Balaban-type index from electronegativity weighted distance matrix, which is eigenvalue-				
	based indices descriptor; GATS5m, Geary autocorrelationlag 5/weighted by atomic masses, which is				
	2D-autocorrelation descriptor; vez1, Eigenvector coefficient sum from z-weighted distance matrix, which is eigenvalue-based descriptor.				
	MATS	P, Moran auto	correlation la	ag 1/weighted by atomic polarizability, which is 2D-	
	autocor	relation descrip	tor; MDDD	which is connectivity based indices descriptor; MATS8m, Moran	
	autocor	relation - lag 8/	weighted by	atomic masses, which is 2D-autocorrelation descriptor; VEP2,	
	average eigenvector coefficient sum from polarizability weighted distance matrix, which is				
	eigenvalue-based descriptor.				
	Cluster	analysis and	two-dimens	ional quantitative structure-activity relationship (2D-QSAR) of	
Reference	Pseudomonas aeruginosa deacetylase LpxC inhibitors. Bioorganic & Medicinal Chemistry Letters 16				
	(2006)	5136–5143			

Target Species	Pseudomonas aeruginosa				
Chemical Type	2-Arylthiazolines				
Mode of Action	Inhibitor				
QSAR Model 1	$\log(1/\text{IC}_{50}) = -7.04877 + 43.526 \times \text{mats} 1\text{v}^2 + 3.48946 \times \text{VEA1} \\ -1.75733 \times \text{SPP}^2 - 0.1086 \times \text{X4V}^2 - 0.0232 \times \langle \text{D/Dr}05 - 88.418 \rangle$ $N = 37, \text{ LOF} = 0.314, \ r^2 = 0.703, \ r_{\text{adi}}^2 = 0.655, \ F\text{-test} = 14.698,$ $\text{LSE} = 0.155, \ r = 0.839, \ \vec{q}^2 = 0.584, \ \text{BS} r^2 \pm \text{SD} = 0.704 \pm .006, r_{\text{pred}}^2 = 0.107$				

QSAR Model 2	$\begin{split} \log(1/\text{IC}_{50}) &= 5.3512 + 0.0795 \times \text{MAXDP}^{\wedge}2 + 16.6973 \times \langle 1.961 - \text{JHETE} \rangle \\ &- 1.755 \times \text{GATS5m}^{\wedge}2 - 2.8359 \times \langle \text{vez1} - 4.509 \rangle \\ N &= 20, \text{ LOF} = 0.170, \ r^2 = 0.904, \ r_{\text{adj}}^2 = 0.878, \ F\text{-test} = 35.126, \\ \text{LSE} &= 0.042, \ r = 0.951, \ q^2 = 0.805, \ \text{BS} \\ r^2 \pm \text{SD} &= 0.904 \pm 0.003, \ r_{\text{pred}}^2 = 0.598. \end{split}$					
QSAR Model 3	$\begin{aligned} \log(1/\text{IC}_{50}) = & 3.9227 + 165.06 \times \text{MATS1P}^{\wedge}2 + 0.0048 \times \text{MDDD}^{\wedge}2 \\ & + 2.1208 \times \langle -0.023 - \text{MATS8m} \rangle - 53.057 \times \langle 0.223 - \text{VEP2} \rangle \\ N = & 17, \text{ LOF} = 0.163, \ r^2 = 0.944, \ r_{\text{adj}}^2 = 0.925, \ F\text{-test} = 50.359, \\ \text{LSE} = & 0.028, \ r = 0.944, \ q^2 = 0.906, \ \text{BS}r^2 \pm \text{SD} = 0.904 \pm 0.00, \ r_{\text{pred}}^2 = 0.608. \end{aligned}$					
Molecular Descriptor	Mats1v (Waals vo sum from X4V (co descripto N is the	(a 2D-autocorrection of a 2D-autocorrection o	elation described an eigenvaluntrix; SPP (a riptor) which istance/detorules in tra	riptor) which is Moran autocorrelation lag one weighted by van der ue-based indices descriptor) which is an Eigenvector coefficient a charge descriptor) which is a sub-molecular polarity parameter; the is a valence connectivity index chi-4; D/Dr05 (a topological our ring index of order 5. In ining set, LOF is lack of fit score that resists overfitting, r² is lar² adj is square of adjusted correlation coefficient. Descriptors' meaning Moran autocorrelation lag one weighted by van der Waals volume Moran autocorrelation lag one weighted by atomic polarizability Moran autocorrelation lag one weighted by atomic masses Geary autocorrelation lag one weighted by atomic masses Submolecular polarity parameter Valence connectivity index chi-4 Eigenvector coefficient sum from adjacency matrix Eigenvector coefficient sum from z weighted distance matrix (Barysz matrix)		
	9	MAXDP	T^E_{lpha}	Maximal electrotopological positive variation		

	10	MDDD	Δσ	Mean distance degree deviation			
	11	D/Dr05	[D/Δ] _{ij}	Distance/detour ring index of order 5			
	12	JHETE	$J^{^{\chi}}$	Balaban type index from electronegativity weighted distance matrix			
	13	VEP2	λ_i^{lpha}	Average coefficient sum from polarizability weighted distance matrix			
	MAXDP, maximal electrotopological positive variation, which is connectivity indices descriptor; JHETE, Balaban-type index from electronegativity weighted distance matrix, which is eigenvalue-based indices descriptor; GATS5m, Geary autocorrelationlag 5/weighted by atomic masses, which is 2D-autocorrelation descriptor; vez1, Eigenvector coefficient sum from z-weighted distance matrix, which is eigenvalue-based descriptor. MATS1P, Moran autocorrelation lag 1/weighted by atomic polarizability, which is 2D-autocorrelation descriptor; MDDD which is connectivity based indices descriptor; MATS8m, Moran autocorrelation - lag 8/weighted by atomic masses, which is 2D-autocorrelation descriptor; VEP2, average eigenvector coefficient sum from polarizability weighted distance matrix, which is eigenvalue-based descriptor.						
Reference	Cluster analysis and two-dimensional quantitative structure–activity relationship (2D-QSAR) of Pseudomonas aeruginosa deacetylase LpxC inhibitors. <i>Bioorganic & Medicinal Chemistry Letters</i> 16 (2006) 5136–5143						