Target Information
Target General Information | Top | |||||
---|---|---|---|---|---|---|
Target ID |
T63595
(Former ID: TTDR00518)
|
|||||
Target Name |
High mobility group protein B1 (HMGB1)
|
|||||
Synonyms |
High mobility group protein 1; High mobility group box chromosomal protein 1; HMG1; HMG-1
Click to Show/Hide
|
|||||
Gene Name |
HMGB1
|
|||||
Target Type |
Literature-reported target
|
[1] | ||||
Function |
In the nucleus is one of the major chromatin-associated non-histone proteins and acts as a DNA chaperone involved in replication, transcription, chromatin remodeling, V(D)J recombination, DNA repair and genome stability. Proposed to be an universal biosensor for nucleic acids. Promotes host inflammatory response to sterile and infectious signals and is involved in the coordination and integration of innate and adaptive immune responses. In the cytoplasm functions as sensor and/or chaperone for immunogenic nucleic acids implicating the activation of TLR9-mediated immune responses, and mediates autophagy. Acts as danger associated molecular pattern (DAMP) molecule that amplifies immune responses during tissue injury. Released to the extracellular environment can bind DNA, nucleosomes, IL-1 beta, CXCL12, AGER isoform 2/sRAGE, lipopolysaccharide (LPS) and lipoteichoic acid (LTA), and activates cells through engagement of multiple surface receptors. In the extracellular compartment fully reduced HMGB1 (released by necrosis) acts as a chemokine, disulfide HMGB1 (actively secreted) as a cytokine, and sulfonyl HMGB1 (released from apoptotic cells) promotes immunological tolerance. Has proangiogdenic activity. May be involved in platelet activation. Binds to phosphatidylserine and phosphatidylethanolamide. Bound to RAGE mediates signaling for neuronal outgrowth. May play a role in accumulation of expanded polyglutamine (polyQ) proteins such as huntingtin (HTT) or TBP. Multifunctional redox sensitive protein with various roles in different cellular compartments.
Click to Show/Hide
|
|||||
UniProt ID | ||||||
Sequence |
MGKGDPKKPRGKMSSYAFFVQTCREEHKKKHPDASVNFSEFSKKCSERWKTMSAKEKGKF
EDMAKADKARYEREMKTYIPPKGETKKKFKDPNAPKRPPSAFFLFCSEYRPKIKGEHPGL SIGDVAKKLGEMWNNTAADDKQPYEKKAAKLKEKYEKDIAAYRAKGKPDAAKKGVVKAEK SKKKKEEEEDEEDEEDEEEEEDEEDEDEEEDDDDE Click to Show/Hide
|
|||||
3D Structure | Click to Show 3D Structure of This Target | AlphaFold | ||||
HIT2.0 ID | T92HNO |
Cell-based Target Expression Variations | Top | |||||
---|---|---|---|---|---|---|
Cell-based Target Expression Variations |
Different Human System Profiles of Target | Top |
---|---|
Human Similarity Proteins
of target is determined by comparing the sequence similarity of all human proteins with the target based on BLAST. The similarity proteins for a target are defined as the proteins with E-value < 0.005 and outside the protein families of the target.
A target that has fewer human similarity proteins outside its family is commonly regarded to possess a greater capacity to avoid undesired interactions and thus increase the possibility of finding successful drugs
(Brief Bioinform, 21: 649-662, 2020).
Human Tissue Distribution
of target is determined from a proteomics study that quantified more than 12,000 genes across 32 normal human tissues. Tissue Specificity (TS) score was used to define the enrichment of target across tissues.
The distribution of targets among different tissues or organs need to be taken into consideration when assessing the target druggability, as it is generally accepted that the wider the target distribution, the greater the concern over potential adverse effects
(Nat Rev Drug Discov, 20: 64-81, 2021).
Human Pathway Affiliation
of target is determined by the life-essential pathways provided on KEGG database. The target-affiliated pathways were defined based on the following two criteria (a) the pathways of the studied target should be life-essential for both healthy individuals and patients, and (b) the studied target should occupy an upstream position in the pathways and therefore had the ability to regulate biological function.
Targets involved in a fewer pathways have greater likelihood to be successfully developed, while those associated with more human pathways increase the chance of undesirable interferences with other human processes
(Pharmacol Rev, 58: 259-279, 2006).
Biological Network Descriptors
of target is determined based on a human protein-protein interactions (PPI) network consisting of 9,309 proteins and 52,713 PPIs, which were with a high confidence score of ≥ 0.95 collected from STRING database.
The network properties of targets based on protein-protein interactions (PPIs) have been widely adopted for the assessment of target’s druggability. Proteins with high node degree tend to have a high impact on network function through multiple interactions, while proteins with high betweenness centrality are regarded to be central for communication in interaction networks and regulate the flow of signaling information
(Front Pharmacol, 9, 1245, 2018;
Curr Opin Struct Biol. 44:134-142, 2017).
Human Similarity Proteins
Human Tissue Distribution
Human Pathway Affiliation
Biological Network Descriptors
|
There is no similarity protein (E value < 0.005) for this target
|
Note:
If a protein has TS (tissue specficity) scores at least in one tissue >= 2.5, this protein is called tissue-enriched (including tissue-enriched-but-not-specific and tissue-specific). In the plots, the vertical lines are at thresholds 2.5 and 4.
|
KEGG Pathway | Pathway ID | Affiliated Target | Pathway Map |
---|---|---|---|
Base excision repair | hsa03410 | Affiliated Target |
|
Class: Genetic Information Processing => Replication and repair | Pathway Hierarchy | ||
Autophagy - animal | hsa04140 | Affiliated Target |
|
Class: Cellular Processes => Transport and catabolism | Pathway Hierarchy | ||
Necroptosis | hsa04217 | Affiliated Target |
|
Class: Cellular Processes => Cell growth and death | Pathway Hierarchy | ||
Neutrophil extracellular trap formation | hsa04613 | Affiliated Target |
|
Class: Organismal Systems => Immune system | Pathway Hierarchy |
Degree | 22 | Degree centrality | 2.36E-03 | Betweenness centrality | 2.24E-03 |
---|---|---|---|---|---|
Closeness centrality | 2.51E-01 | Radiality | 1.44E+01 | Clustering coefficient | 9.96E-02 |
Neighborhood connectivity | 4.18E+01 | Topological coefficient | 6.55E-02 | Eccentricity | 11 |
Download | Click to Download the Full PPI Network of This Target | ||||
Target Regulators | Top | |||||
---|---|---|---|---|---|---|
Target-regulating microRNAs | ||||||
Target-interacting Proteins |
References | Top | |||||
---|---|---|---|---|---|---|
REF 1 | How many drug targets are there Nat Rev Drug Discov. 2006 Dec;5(12):993-6. |
If You Find Any Error in Data or Bug in Web Service, Please Kindly Report It to Dr. Zhou and Dr. Zhang.