References |
Top |
REF 1 |
Genetic and Proteomic Interrogation of Lower Confidence Candidate Genes Reveals Signaling Networks in -Catenin-Active Cancers. Cell Syst. 2016 Sep 28;3(3):302-316.e4.
|
REF 2 |
A high-throughput approach for measuring temporal changes in the interactome. Nat Methods. 2012 Sep;9(9):907-9.
|
REF 3 |
Architecture of the human interactome defines protein communities and disease networks. Nature. 2017 May 25;545(7655):505-509.
|
REF 4 |
The BioPlex Network: A Systematic Exploration of the Human Interactome. Cell. 2015 Jul 16;162(2):425-440.
|
REF 5 |
The protein interaction landscape of the human CMGC kinase group. Cell Rep. 2013 Apr 25;3(4):1306-20.
|
REF 6 |
Interlaboratory reproducibility of large-scale human protein-complex analysis by standardized AP-MS. Nat Methods. 2013 Apr;10(4):307-14.
|
REF 7 |
Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7SK capping enzyme. Mol Cell. 2007 Jul 20;27(2):262-74.
|
REF 8 |
Human mediator subunit MED26 functions as a docking site for transcription elongation factors. Cell. 2011 Jul 8;146(1):92-104.
|
REF 9 |
A lentiviral functional proteomics approach identifies chromatin remodeling complexes important for the induction of pluripotency. Mol Cell Proteomics. 2010 May;9(5):811-23.
|
REF 10 |
The La-related protein LARP7 is a component of the 7SK ribonucleoprotein and affects transcription of cellular and viral polymerase II genes. EMBO Rep. 2008 Jun;9(6):569-75.
|
REF 11 |
The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature. 2001 Nov 15;414(6861):317-22.
|
REF 12 |
Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol Cell. 2005 Aug 19;19(4):535-45.
|
REF 13 |
AFF1 is a ubiquitous P-TEFb partner to enable Tat extraction of P-TEFb from 7SK snRNP and formation of SECs for HIV transactivation. Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):E15-24.
|
REF 14 |
A higher-order complex containing AF4 and ENL family proteins with P-TEFb facilitates oncogenic and physiologic MLL-dependent transcription. Cancer Cell. 2010 Feb 17;17(2):198-212.
|
REF 15 |
The ubiquitin ligase Siah1 controls ELL2 stability and formation of super elongation complexes to modulate gene transcription. Mol Cell. 2012 May 11;46(3):325-34.
|
REF 16 |
Modulation of a P-TEFb functional equilibrium for the global control of cell growth and differentiation. Mol Cell Biol. 2006 Oct;26(19):7068-76.
|
REF 17 |
Identification of multiple cyclin subunits of human P-TEFb. Genes Dev. 1998 Mar 1;12(5):755-62.
|
REF 18 |
Inhibition of P-TEFb (CDK9/Cyclin T) kinase and RNA polymerase II transcription by the coordinated actions of HEXIM1 and 7SK snRNA. Mol Cell. 2003 Oct;12(4):971-82.
|
REF 19 |
The Cdk9 and cyclin T subunits of TAK/P-TEFb localize to splicing factor-rich nuclear speckle regions. J Cell Sci. 2001 Apr;114(Pt 8):1491-503.
|
REF 20 |
Functional inactivation of Cdk9 through oligomerization chain reaction. Oncogene. 2003 Jul 31;22(31):4882-8.
|
REF 21 |
The structure of P-TEFb (CDK9/cyclin T1), its complex with flavopiridol and regulation by phosphorylation. EMBO J. 2008 Jul 9;27(13):1907-18.
|
REF 22 |
Panorama of ancient metazoan macromolecular complexes. Nature. 2015 Sep 17;525(7569):339-44.
|
REF 23 |
7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature. 2001 Nov 15;414(6861):322-5.
|
REF 24 |
The CDK9-associated cyclins T1 and T2 exert opposite effects on HIV-1 Tat activity. AIDS. 1999 Aug 20;13(12):1453-9.
|
REF 25 |
Physical interaction between pRb and cdk9/cyclinT2 complex. Oncogene. 2002 Jun 13;21(26):4158-65.
|
REF 26 |
The CDC2-related kinase PITALRE is the catalytic subunit of active multimeric protein complexes. Biochem J. 1996 Oct 1;319 ( Pt 1):293-8.
|
REF 27 |
CDC2-related kinase PITALRE phosphorylates pRb exclusively on serine and is widely expressed in human tissues. J Cell Physiol. 1997 Aug;172(2):265-73.
|
REF 28 |
PITALRE, a nuclear CDC2-related protein kinase that phosphorylates the retinoblastoma protein in vitro. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3834-8.
|
REF 29 |
A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways. Cell. 2014 Jul 17;158(2):434-448.
|
REF 30 |
USP49 negatively regulates tumorigenesis and chemoresistance through FKBP51-AKT signaling. EMBO J. 2017 May 15;36(10):1434-1446.
|
REF 31 |
Human Polymerase-Associated Factor complex (PAFc) connects the Super Elongation Complex (SEC) to RNA polymerase II on chromatin. Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):E636-45.
|
REF 32 |
The BRCA1 COOH-terminal region acts as an RNA polymerase II carboxyl-terminal domain kinase inhibitor that modulates p21WAF1/CIP1 expression. J Biol Chem. 2006 Jul 28;281(30):21119-30.
|
REF 33 |
A uniform procedure for the purification of CDK7/CycH/MAT1, CDK8/CycC and CDK9/CycT1. Biol Proced Online. 2004;6:163-172.
|
REF 34 |
Retroviral cyclin enhances cyclin-dependent kinase-8 activity. J Virol. 2012 May;86(10):5742-51.
|
REF 35 |
Three cyclin-dependent kinases preferentially phosphorylate different parts of the C-terminal domain of the large subunit of RNA polymerase II. Eur J Biochem. 2004 Mar;271(5):1004-14.
|
REF 36 |
Three RNA polymerase II carboxyl-terminal domain kinases display distinct substrate preferences. J Biol Chem. 2001 Apr 6;276(14):10913-20.
|
REF 37 |
Phosphorylated positive transcription elongation factor b (P-TEFb) is tagged for inhibition through association with 7SK snRNA. J Biol Chem. 2004 Feb 6;279(6):4153-60.
|
REF 38 |
Compensatory contributions of HEXIM1 and HEXIM2 in maintaining the balance of active and inactive positive transcription elongation factor b complexes for control of transcription. J Biol Chem. 2005 Apr 22;280(16):16368-76.
|
REF 39 |
Cyclin-dependent kinase control of the initiation-to-elongation switch of RNA polymerase II. Nat Struct Mol Biol. 2012 Nov;19(11):1108-15.
|
REF 40 |
The C-terminal domain phosphatase and transcription elongation activities of FCP1 are regulated by phosphorylation. Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2328-33.
|
REF 41 |
The leukemogenic AF4-MLL fusion protein causes P-TEFb kinase activation and altered epigenetic signatures. Leukemia. 2011 Jan;25(1):135-44.
|
REF 42 |
TFIID component TAF7 functionally interacts with both TFIIH and P-TEFb. Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5367-72.
|
REF 43 |
A protein phosphatase from human T cells augments tat transactivation of the human immunodeficiency virus type 1 long-terminal repeat. Virology. 2002 Apr 25;296(1):6-16.
|
REF 44 |
Phosphorylation of the RNA polymerase II carboxyl-terminal domain by CDK9 is directly responsible for human immunodeficiency virus type 1 Tat-activated transcriptional elongation. Mol Cell Biol. 2002 Jul;22(13):4622-37.
|
REF 45 |
CDK9 is constitutively expressed throughout the cell cycle, and its steady-state expression is independent of SKP2. Mol Cell Biol. 2003 Aug;23(15):5165-73.
|
REF 46 |
Phosphorylation by cyclin-dependent kinase-9 controls ubiquitin-conjugating enzyme-2A function. Cell Cycle. 2012 Jun 1;11(11):2122-7.
|
REF 47 |
A human immunodeficiency virus type 1 Tat-like arginine-rich RNA-binding domain is essential for HEXIM1 to inhibit RNA polymerase II transcription through 7SK snRNA-mediated inactivation of P-TEFb. Mol Cell Biol. 2004 Jun;24(12):5094-105.
|
REF 48 |
H2B ubiquitylation promotes RNA Pol II processivity via PAF1 and pTEFb. Mol Cell. 2014 Jun 19;54(6):920-931.
|
REF 49 |
Cdk9 phosphorylates p53 on serine 392 independently of CKII. J Cell Physiol. 2006 Sep;208(3):602-12.
|
REF 50 |
Purification of a Tat-associated kinase reveals a TFIIH complex that modulates HIV-1 transcription. EMBO J. 1997 May 15;16(10):2836-50.
|
REF 51 |
HEXIM2, a HEXIM1-related protein, regulates positive transcription elongation factor b through association with 7SK. J Biol Chem. 2005 Apr 22;280(16):16360-7.
|
REF 52 |
c-Myc recruits P-TEFb for transcription, cellular proliferation and apoptosis. Oncogene. 2003 Aug 28;22(36):5707-11.
|
REF 53 |
c-Myc mediates activation of the cad promoter via a post-RNA polymerase II recruitment mechanism. J Biol Chem. 2001 Dec 21;276(51):48562-71.
|
REF 54 |
Dichotomous but stringent substrate selection by the dual-function Cdk7 complex revealed by chemical genetics. Nat Struct Mol Biol. 2006 Jan;13(1):55-62.
|
REF 55 |
CDK9 autophosphorylation regulates high-affinity binding of the human immunodeficiency virus type 1 tat-P-TEFb complex to TAR RNA. Mol Cell Biol. 2000 Sep;20(18):6958-69.
|
REF 56 |
Binding of the 7SK snRNA turns the HEXIM1 protein into a P-TEFb (CDK9/cyclin T) inhibitor. EMBO J. 2004 Jul 7;23(13):2608-19.
|
REF 57 |
A census of human soluble protein complexes. Cell. 2012 Aug 31;150(5):1068-81.
|